
A fully distributed OpenID Connect deployment based on domain names:
id4me

Challenges, lessons-learned and take-aways

Vittorio Bertola
Open-Xchange

vittorio.bertola@open-xchange.com

Marcos Sanz Grossón
DENIC eG

sanz@denic.de

Abstract

id4me is an open project working on a public standard
for identity management, creating an open, federated
and interoperable identity framework on an Internet
scale.

This paper presents deployment challenges and lessons
learned, describes some problems that are not fully
solved yet, and seeks for input and collaboration from
the OAuth Security Workshop 2018 participants. 1

1. Introduction

As online services become more and more targeted and
customized, Internet users have to authenticate and
provide personal information into each and every one of
them.

Traditionally, authentication happens via a username
and a password, but this method is becoming harder
and harder to manage for users as the number of online
services requiring authentication grows.

In the last few years, several over-the-top service
providers (OTTs), such as Google and Facebook, have
started to provide Internet-wide single sign-on (SSO)
services based on their own credentials. This is very
convenient, but has a series of drawbacks, prominently
provider lock-in, privacy considerations, and the lack of
interoperability, still requiring users to have multiple
accounts - one per each OTT.

This is why the authors, as part of a broader group,
started working on an identity management framework
that could work just like those of the OTTs, but also be
open, public and federated, allowing anyone to provide
users with credentials valid for Internet-wide SSO. Such
a system, by giving users a way to choose and change
their Identity Provider (IdP), would empower the user
rather than the provider, and protect the user’s privacy
and freedom.

1 "OAuth Security Workshop 2018 | ST - FBK | ST - Fondazione Bruno
...." https://st.fbk.eu/osw2018. Accessed 18 Jan. 2018.

The id4me architecture is based on OpenID Connect , 2

the current de facto standard for online authentication
systems, and on the Domain Name System (DNS),
traditionally the cornerstone for Internet directories. A full
description of the architecture can be found in the IETF
draft repositories . 3

We will not enter here into a detailed description of the
entire architecture, but we will rather discuss specific
aspects throughout the paper.

2. Using DNS-based identifiers

As the objective is to provide a unifying and fully
interoperable framework for use by the entire Internet, it
is necessary to associate each possible online identity to
an identifier that is guaranteed to be unique over the
global network at any given moment.

The easiest way to do this is to rely on the Domain
Name System, which offers a global, distributed way to
create and manage unique identifiers. This can be
accomplished by adopting fully qualified DNS
hostnames as identifiers; email addresses enjoy the
same qualities as well. Also, the latest extensions to the
standards allow for fully internationalized DNS
hostnames and email addresses , using any script and 4

language. The DNSSEC extensions provide for security 5

properties like integrity and source authentication.

This choice would also allow for the integration into the
global standard of the existing private namespaces; if
the private SSO system uses email addresses as
identifiers, they can use the email-to-hostname mapping
system provided in the draft id4me specifications; if they
use any other type of local string, the provider just needs
to implement their own mapping mechanism to

2 (2014, November 8). Final: OpenID Connect Core 1.0 incorporating
errata set 1. Retrieved January 18, 2018, from
http://openid.net/specs/openid-connect-core-1_0.html
3 (2017, October 27). An Architecture for a Public Identity Infrastructure
Based on DNS and OpenID Connect. Retrieved January 18, 2018, from
https://tools.ietf.org/html/draft-bertola-dns-openid-pidi-architecture-00
4 (2010, August). "RFC 5890 - Internationalized Domain Names for
Applications (IDNA" Accessed January 18, 2018.
https://tools.ietf.org/html/rfc5890.
5 (2005, March). "RFC 4035 - Protocol Modifications for the DNS Security
Extensions." Accessed January 18, 2018.
https://tools.ietf.org/html/rfc4035.

1

https://st.fbk.eu/osw2018
http://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/draft-bertola-dns-openid-pidi-architecture-00
https://tools.ietf.org/html/rfc5890
https://tools.ietf.org/html/rfc4035

associate them to hostnames within a DNS zone that
they own.

It might be that DNS-based OpenID identifiers, though
standard-compliant, are not properly dealt with by some
deployments. For instance, even the OpenID Foundation
certification software was dealing wrong with this
so-called “non-scoped” identifiers (those without an “@”
character), a bug that was communicated to the
foundation and quickly fixed . The abundance (or lack 6

thereof) of such kind of bugs still needs to be further
assessed.

3. Proving possession of control of the identifier

In the OTT/social-media SSO landscape the user
registers (or already has) an account at the OTT
provider, which will assign an identifier to the user
scoped within the boundaries of the provider. It’s easy
for the provider to check whether an identifier already
exists, and avoid duplication. id4me lets the user bring
their own identifier to the system (their domain name),
thus the Identity Providers have to implement a
mechanism for the user to prove possession of said
identifier.

The id4me architecture does not address the issue of
how to actually verify the true identity of the user in the
real world and, accordingly, there is no requirement for
an actual real-life identification of the users. Thus,
possession/control of an identifier is expected to be
proven in a technical way, that should be easy to
automate, and does not require for example contractual
information to be available or verified.

Different mechanisms exist nowadays to create a
standard interaction between DNS providers and service
providers (like web-hosting), which could be used to
prove/exert control on a given domain’s DNS. Domain
Connect , initially created by GoDaddy, is a prominent 7

example in this area. However, id4me has decided to
use the IETF’s soon-to-become-standard ACME for this 8

purpose.

ACME stands for Automated Certificate Management
Environment and is a protocol that has been (and still is)
under extensive security analysis by the IETF ACME
working group. Originally conceived to be exclusively a
protocol for the automation of certificate management,
ACME requires the applicant of a domain-validated
certificate to prove control of the domain name in
question. This is accomplished by solving challenges, of
which three different types exist: HTTP, TLS SNI (Server
Name Indication) and DNS.

6 https://github.com/openid-certification/oidctest/issues/41
7 (n.d.). The Spec – Domain Connect. Retrieved January 18, 2018, from
http://domainconnect.org/specification/
8 (2017, December 14). draft-ietf-acme-acme-09 - Automatic Certificate
Management Retrieved January 18, 2018, from
https://datatracker.ietf.org/doc/draft-ietf-acme-acme/

In order to avoid the overhead in setting up HTTP or
TLS servers (s. also Discovery section) we have opted
for the user (or their DNS provider in their behalf) to
solve a DNS challenge, properly secured with DNSSEC 9

. By submitting an ACME pre-authorization request to
the IdP (that plays the role of the ACME server)
including the desired id4me in the ACME identifiers list,
the IdP will try to validate control by the user of said
id4me identifier in a challenge-response process. 10

After successful validation, the IdP returns a
one-time-usage magic link to the ACME client in the
Location-Header of the last server response that will
allow for the user to finish the id4me registration process
and instantiate their id4me credentials. The following is
an example of the last interaction between the ACME
client and the IdP:

POST

https://acme.freedom-id.de/v1/authz/zpMDAxZ0NRhGS1jREXV

JW2wlkzrFrQAAAWD51xK_/0

Header:

{"nonce":"LmX8_6AmZg4HhmDeJnpyDQAAAWD51xK5","url":"http

s://acme.freedom-id.de/v1/authz/zpMDAxZ0NRhGS1jREXVJW2w

lkzrFrQAAAWD51xK_/0","kid":"https://acme.freedom-id.de/

v1/account/0","alg":"RS256"}

Payload:

{"type":"dns-01","keyAuthorization":"tjg83U7wYg2oNWaXgu

-Wsvr8nUf6ch8boXg5UQs8jb-k0f3ixtTLjERej5QW6sv5DLizDAAAA

WD51xK-.BzZPX5vawdddJUpTaDUGpUm0xMrJHsUUIwXcRzatorE"}

HTTP/1.1 200

[...]

Link:

<https://auth.freedom-id.de/init/magic/mJK6QGCffxssqSVp

qTKzOw0GY0f9gacxMi2Y0aL3wq>;rel="create-form"

{"type":"dns-01","status":"valid","token":"tjg83U7wYg2o

NWaXgu-Wsvr8nUf6ch8boXg5UQs8jb-k0f3ixtTLjERej5QW6sv5DLi

zDAAAAWD51xK-","url":"https://acme.freedom-id.de/v1/aut

hz/zpMDAxZ0NRhGS1jREXVJW2wlkzrFrQAAAWD51xK_/0"}

This way the initial id4me credentials should only be
known to the IdP, not to the DNS provider.

4. Discovery of the corresponding Identity Provider
via DNS

OpenID Connect Discovery 1.0 specifies the so-called 11

“Issuer Discovery” process for any client to determine
the location of an IdP. In this process the end-user
supplies an identifier as input to the Relying Party (RP,
synonym of the OAuth “client” in the OpenID Connect
vocabulary). The RP should apply some normalization
rules to the identifier to determine the “resource” and
“host” and then make an HTTP GET request to the

9 Though this is only a recommendation in the ACME specification, not a
requirement.
10 A proper certificate request could also be used for this purpose,
however, all actual certificate issuance/revocation mechanisms of the
protocol are not really necessary in the context of id4me.
11 (2014, November 8). Final: OpenID Connect Discovery 1.0
incorporating errata set 1. Retrieved January 18, 2018, from
https://openid.net/specs/openid-connect-discovery-1_0.html

2

http://domainconnect.org/specification/
https://datatracker.ietf.org/doc/draft-ietf-acme-acme/
https://openid.net/specs/openid-connect-discovery-1_0.html

host's WebFinger endpoint, by presuming all hosts run 12

such one. OpenID Connect Discovery also leaves room
for alternative “out-of-band” discovery mechanisms.

Though setting up a WebFinger service for each domain
name hosting an id4me identifier is perfectly possible,
it’s nonetheless an expensive overhead: it requires
spawning and operating a webservice that it might not
exist in the first place. In order to make the discovery
process secure, it must properly run over HTTPS, which
further complicates operation and introduces a
security-dependence on the X.509 Public Key
Infrastructure.

We explored appropriate lightweight technologies that
might fit in the out-of-band discovery mechanism
foreseen in the standard and decided that DNS itself
was the most natural fit, because DNS hat to be set-up
and run for a domain anyway and predates the
instantiation of any WebFinger service.

Dedicated DNS Resource Record (RR) types for
discovery purposes exist (NAPTR RR, SRV RR) 13141516

and there are a number of Internet standards that use
them in different ways for discovery/bootstrapping. We
opted for a human-readable TXT RR-based solution,
fully described in a document in the IETF draft
repositories , analog to what other security standards, 17

like SPF , DKIM or DMARC , do. 18 19 20

An id4me discovery DNS record looks like this:

_openid.yourname.example.de

IN TXT

"v=OID1;iss=auth.freedom-id.de;clp=identityagent.de"

Usage of TXT RR is simple and straightforward for the
clients. Usage of DNSSEC on top provides the security
properties needed.

5. Distributing the location of claims about the
subject

12 (2013, September). RFC 7033 - WebFinger - IETF Tools. Retrieved
January 18, 2018, from https://tools.ietf.org/html/rfc7033
13 (2000, February). RFC 2782 - A DNS RR for specifying the location of
... - IETF Tools. Retrieved January 18, 2018, from
https://tools.ietf.org/html/rfc2782
14 (2002, October). RFC 3403 - Dynamic Delegation Discovery System ...
- IETF Tools. Retrieved January 18, 2018, from
https://tools.ietf.org/html/rfc3403
15 (2005, January). RFC 3958 - Domain-Based Application Service
Location ... - IETF Tools. Retrieved January 18, 2018, from
https://tools.ietf.org/html/rfc3958
16 (2013, February). RFC 6763 - DNS-Based Service Discovery - IETF
Tools. Retrieved January 18, 2018, from https://tools.ietf.org/html/rfc6763
17 (2017, October 18). OpenID Connect DNS-based Discovery, Retrieved
January 18, 2018, from
https://tools.ietf.org/html/draft-sanz-openid-dns-discovery-00
18 (2014, April). RFC 7208 - Sender Policy Framework (SPF) for ... - IETF
Tools. Retrieved January 18, 2018, from https://tools.ietf.org/html/rfc7208
19 (2011, September). RFC 6376 - DomainKeys Identified Mail (DKIM)
Signatures - IETF Tools. Retrieved January 18, 2018, from
https://tools.ietf.org/html/rfc6376
20 (2015, March). RFC 7489 - Domain-based Message Authentication ... -
IETF Tools. Retrieved January 18, 2018, from
https://tools.ietf.org/html/rfc7489

OpenID Connect Core 1.0 foresees the possibility of an
IdP that is not able to assert certain claims about the
user, and provides for mechanisms to retrieve the
answer from a third-party, the so-called Claims Provider.
This can be done at the UserInfo Endpoint of the IdP, via
Aggregated Claims (IdP itself gathers and returns the
claim values asserted by the Claims Provider) or via
Distributed Claims (IdP returns references to those
claims located at the Claims Provider).
The id4me environment makes usage of Distributed
Claims: domain name registries do not necessarily have
user/registrant personal data and might delegate
answers to their registrars. However we have found
these mechanisms to be underspecified (like how to find
out the proper location of the Claims Provider), which
logically leads to insufficient/wrong support (bugs in the
OpenID certification software, missing support in client
libraries).

For example, at the time of this writing, the OpenID
Foundation certification software tries to validate the
JWT signatures on the claims asserted by the Claims
Provider with the public key of the IdP, which
consistently fails and thus hinders the id4me product’s
certification . 21

For the other aforementioned problem we have decided
to leverage on the previously described DNS discovery
mechanism to allow for the IdPs to locate the domain’s
Claims Provider (that’s the value of the “clp” property in
the content of the TXT RR) and deliver this information
seamlessly to the client, thus closing this
underspecification of the standard until further normative
advice exists on how to do this.

For the Claims Provider to be able to verify the validity of
OAUTH bearer access tokens, which are opaque to the
clients, they are implemented as JWT signed
self-contained documents that include what claims have
been consented (and which were not) for which client by
the user.

The following is an example of a (decoded,
signature-stripped) id4me access token:

{

 "sub": "yourname.example.de",

 "scp": ["openid"],

 "clm": ["email"],

 "dat": {

"rejected_claims": ["birthdate"]

 },

 "iss": "https://auth.freedom-id.de",

 "exp": 1516200120,

21 https://github.com/openid-certification/oidctest/issues/51

3

https://tools.ietf.org/html/rfc7033
https://tools.ietf.org/html/rfc2782
https://tools.ietf.org/html/rfc3403
https://tools.ietf.org/html/rfc3958
https://tools.ietf.org/html/rfc6763
https://tools.ietf.org/html/draft-sanz-openid-dns-discovery-00
https://tools.ietf.org/html/rfc7208
https://tools.ietf.org/html/rfc6376
https://tools.ietf.org/html/rfc7489

 "iat": 1516199520,

 "cid": "test-client"

}

6. Detaching from the existing X.509 PKI
infrastructure via DANE

OpenID/OAuth communications make ubiquitous usage
of TLS and HTTPS. TLS encryption is currently based
on certificates issued by certificate authorities (CAs).
Within the last few years, a number of CAs suffered
serious security breaches, allowing the issuance of
certificates for well-known domains to parties that did not
own those domains. Trusting a large number of CAs
might be a problem because any breached CA could
issue a certificate for any domain name.

There are a number of approaches to close this loophole
by using DNS. For instance the CAs themselves are
promoting the deployment of the so-called Certification
Authority Authorization (CAA) RR. An alternative 22

approach is the DNS-based Authentication of Named
Entities (DANE), that enables the administrator of a 23

domain name to create and certify themselves the keys
used in that domain's TLS servers by and storing
pointers to them in the DNS . 24

id4me plans to make extensive usage of DANE to
secure HTTPS communications because DANE
embodies the security "principle of least privilege" that is
lacking in the current public CA model. Current support
in web libraries is limited, though, for DANE has only
found wider usage in the email infrastructure so far.

7. Requiring dynamic discovery of supported claims
In the traditional scenario of an OpenID Connect SSO
system controlled by a single entity, standardizing and
discovering claim names is not so important; apart from
the very few basic ones that are standardized in the core
specification, the system owner can just make up the
others as necessary.

In a public and federated scenario, however, two
additional requirements arise:

1. All claim names, including the optional ones,
have to be standardized, so that the different
actors know how to refer to the same piece of
information about the user;

2. RPs need a way to discover which claims are
actually supported by the specific Claims

22 (2013, January). RFC 6844 - DNS Certification Authority Authorization
... - IETF Tools. Retrieved January 18, 2018, from
https://tools.ietf.org/search/rfc6844
23 (2012, August). RFC 6698 - The DNS-Based Authentication of Named
Entities (DANE Retrieved January 18, 2018, from
https://tools.ietf.org/html/rfc6698
24 DANE needs the DNS records to be signed with DNSSEC for its
security model to work.

Provider and IdP, so to know what they can ask
for.

IdPs are recommended to announce metadata on the
claims they support, however this information is static,
and different Claims Providers might support different
claim types.

Also, while id4me plans to standardize a broad number
of claim names and types, this work has not started yet.

In the overall, this is still an area of work-in-progress.

8. Subject Identifier Types
A Subject Identifier is a locally unique and never
reassigned identifier within the IdP for the end-user,
which is intended to be consumed by the client. Two
Subject Identifier types are defined by the OpenID
Connect specification:

● “public”: This provides the same subject
identifier value to all clients. It is the default
behaviour.

● “pairwise”: This provides a different subject
identifier value to each client, so as not to
enable clients to correlate the end-user's
activities without permission.

While it’s been shown that pairwise identifiers still allow
linkability/correlation of identifiers under certain
circumstances , they are a good idea in general and 25

worth to support in id4me, just to “raise the bar”.
However, it is counter-intuitive (to say the less) for the
standard to allow for the client during the dynamic client
registration process to choose the Subject Identifier 26

type they want to work with, specially if these are the
very clients whose evil doings this feature wants to
defend from.

One pragmatic solution for that could be to configure the
id4me IdPs to only offer/support “pairwise” Subject
Identifier types during client registration. That has
proven a challenge, though, as one of the biggest
identity server applications worldwide (and the one 27

being used in id4me at the moment) still does not have
native support for this configuration option.

While still waiting for the “pairwise-only” configuration in
the server to be possible, leakage of the public Subject
Identifier value to clients has been found in our tests,
even if the clients registered as “pairwise”. The public
value was unwillingly disclosed by the server to the
clients within the self-contained bearer access token (but

25 (2009, September 24). Pairwise identifiers and linkability online (1/3) –
Random Oracle. Retrieved January 18, 2018, from
https://randomoracle.wordpress.com/2009/09/24/pairwise-identifiers-and-
linkability-online-13/
26 (2014, November 8). Final: OpenID Connect Dynamic Client
Registration 1.0 incorporating Retrieved January 18, 2018, from
https://openid.net/specs/openid-connect-registration-1_0.html
27 90 mio end-users as of July 2017, data provided by the vendor

4

https://tools.ietf.org/search/rfc6844
https://tools.ietf.org/html/rfc6698
https://randomoracle.wordpress.com/2009/09/24/pairwise-identifiers-and-linkability-online-13/
https://randomoracle.wordpress.com/2009/09/24/pairwise-identifiers-and-linkability-online-13/
https://openid.net/specs/openid-connect-registration-1_0.html

only under certain configuration options). This bug has
been communicated to the vendor and it will be fixed in
the upcoming version of the software, expected end of
January at the moment of this writing.

9. Discussion / Future Work

Formal methods in security engineering have led to
discoveries of flaws and vulnerabilities in SSO
deployments and even in the protocols themselves . 28 29

id4me would benefit from a formal analysis as well and
readers are welcome to get in touch with the authors if
interested/capable of carrying out such analysis.

Plain bearer access tokens have some security
drawbacks and thus we would like to explore some 30

proof-of-possession approach in the next
implementation iteration, probably OAuth Token Binding

. 31

At this point in time we are also studying the
compatibility of id4me with similar initiatives also based
on domain names, like MojeID , that could deliver a 32

unified user experience.

28 (2008, October 27). Formal analysis of SAML 2.0 web browser single
sign-on: breaking the Retrieved January 18, 2018, from
http://dl.acm.org/citation.cfm?id=1456397
29 (2016, October 24). A Comprehensive Formal Security Analysis of
OAuth 2.0. Retrieved January 18, 2018, from
http://dl.acm.org/citation.cfm?id=2978385
30 (2017, November 13). draft-ietf-oauth-security-topics-04 - IETF Tools.
Retrieved January 18, 2018, from
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-04
31 (2017, October 26). draft-ietf-oauth-token-binding-05 - OAuth 2.0
Token Binding - IETF Tools. Retrieved January 18, 2018, from
https://tools.ietf.org/html/draft-ietf-oauth-token-binding-05
32 (n.d.). MojeID. Retrieved January 18, 2018, from
https://www.mojeid.cz/

5

http://dl.acm.org/citation.cfm?id=1456397
http://dl.acm.org/citation.cfm?id=2978385
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-04
https://tools.ietf.org/html/draft-ietf-oauth-token-binding-05
https://www.mojeid.cz/

